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FINITE-STATE COMPENSATORS FOR CONTINUOUS PROCESSES

T. L. Johnson

f Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 U.S.A.

Abstract. Mathematical representation of feedback systems composed of both
continuous and finite-state processes is discussed. Such a representation
provides a new viewpoint for the design of computer control systems for

" industrial processes, and clarifies areas in which further research is re-
quired. Some motivating examples are provided.

Keywords. Automata theory; direct digital control; sy;stem theory; switching
theory; computer control; discrete systems.

INTRODUCTION

The feedback interconnection of a continuous
finite-dimensional dynamic system and a fi-
nite state sequential machine is shown in y
Figure 1. Because the natural input and out-
put spaces of such systems are defined over
different fields, two coupling elements,
termed a coder and decoder; are necessary to
define the transformations of plant output
to compensator input, and conversely. There
is an extensive literature dealing with each
of the foregoing elements, for instance: Wil-
lems (1972) defines a dynamical systems the-
ory of continuous processes (the plant); Bo-
brow and Arbib (1974) review automata theory

(the sequential machine); and Gallager (1968)
treats communications theory (the coder and
decoder). Considerable progress has been
made in the last decade, with the emergence -
of mathematical systems theory, toward a uni-
fying view of these disciplines--the works

of Kalman, Falb and Arbib (1969) and Padulo
and Arbid (1970) being representative of a
broader literature.

The purpose of the present note is to pin- .
point the shortcomings of existing theories

when applied to the situation of Fig. 1 and .
to propose a representation for the state of
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Abstract. Mathematical representation of feedback systems composed of both

continuous and finite-state processes is discussed. Such a representation
provides a new viewpoint for the design of computer control systems for
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such systems. Such a representation pro-
vides the cornerstone of a theory for the
direct design of finite-state compensators
for continuous processes, which subsumes
purely continuous control systems and purely
finite-state feedback systems as special
cases.

THE STATUS QUO: SOME NECESSARY IN- |

NOVATIONS ; '

In motivating the new representation, it is °
most appropriate to recount the status quo: .

(a) Continuous Dynamic Systems: ’

———. m— b

T.L. Ushwsov

the form M = (W, 2, Q, 6, A) where the finite
sets W, Z, and Q are the input, output, and
state sets, respectively; and §: I xWx Q-+ Q
A: IXxWxQ- 2 are the next-state and cur-
rent output mappings, respeéctively. The time=-
set I is taken as a sub-interval of the inte-
gers. (The notation has been slightly modified
from that of the literature to conform with
part (a)l.) The machine is thought of as the
recursion %Yy = 6(k,uk,qk) for any k > koeI,

and the output map Mk,uk,qk) =z . It should

be noted that ¢ of part (a) is analogous to
c(kp“kv 6(k'10“k_11 G(k-z""'uko'.qko)"')'

the composition of § with itself k-k, times.

These are characterized (Willems and Mitter,
1971) by sets of the fom L= (U, U, ¥, ¥, x,
¢, r) where

U: input set

U: input space

¥: output set

Y: output space

X: state set

¢: state transition map
r: read-out map

where U, Y are usually taken as Buclidean
vector spaces on the field of real numbers,
R, U:- PT>Uand ¥Y: T -+ Y are normed linear
spaces on the time interval TCR. The sys-
tem I will be assumed finite-dimensional in
this discussion and X is correspondingly
taken as a Euclidean vector space. The state
transition mapping is continuous, with

¢: TxTxUx X+ X, and the readout map
rs TxTxUx XY is continuous,

In addition, ¢ is required to have the iden~
tity, causality, and semigroup properties:

(1) ¢(t,t, u(*), x) = x for all teT, i

u(e)ell, xex.

(i1) For any t > t,, both elements of T,
and any xoex if \':1(1') H hz('r), T <t,
then ¢(t.to, ul('). xo) = ¢(t.f-°o
“2(')1 xo)-

(iii) For any tz > tl > to, all elements of

- T VTR ¥ WSUSUVNIPSNPS T W 7 S N

(¢) Coding and Decoding:

Let A, B denote (finite) alphabets and let A+

(B+) denote the set of non-empty finite-length '
sequences of elements from A{B). Let h: A*‘b
B+ be a homomorphism; then the set h(a) =

{h(a) |acA} is termed a code. h(A) is uniquely
decodable iff h is an injection.

These definitions summarize standard results
from the theory of noiseless channel coding;
see also Gallager (1968).

The objective of the next section is to char-
acterize the interconnection shown in Fig. 1 as
a dynamic system of some general class. Evi-
dently, (a)-(c) axe not directly compatible in
their present condition. This is partly a
problem of notation and technicalities, but
there remain some fundamental difficulties. In
(c), for instance, one would like the alphabet
A to be real rather than finite-valued; but so
long as B is finite, h(e) could never be an
homomorphisn. In (b) and (c), the real-time
sequence of state transitions has been abstract-
ed, and only the ordering of transitions re- ' .
mains; but for continuous dynamical systems as :
in (a), actual transition times in @(t) must be
preserved. The basic operations on the fields '
in (a) and (b) are different, and thus the
class of possible functions generated by ¢ and -
A are inherently different. Finally, it might
be necessary to generalize the input space of
(a) to include distributions (i.e., impulse
trains).
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The system is thought of as the pair of equa-
tions x(t) = ¢(t,t°. u(), x(to)) and y(t) =

. z(t, tyr ult), x(t)), t 2t both in T. Re~
ferring to Fig. 1, the input u(t) may be taken
as the pair (u(t), G(t)).

(b) Finite-State Sequential Machines (Fi-
nite Automata):

(c) Coding and Decoding:

Let A, B denote (finite) alphabets and let A"
(B+) denote the set of non-empty finite-length
sequences of elements from A(B). Let h: A+-0>

B+ be a homomorphism; then the set h(a) =
{h(a) |aca} is termed a code. h(A) is uniquely
decodable iff h is an injection.

These definitions summarize standard results
from the theory of noiseless channel coding;
see also Gallager (1968).

The objective of the next section is to char~
acterize the interconnection shown in Fig. 1 as
a dynamic system of some general class. Evi-
dently, (a)-(c) are not directly compatible in
their present condition. This is partly a
problem of notation and technicalities, but
there remain some fundamental difficulties. In
(c), for instance, one would like the alphabet
A to be real rather than finite-valued; but so
long as B is finite, h(¢) could never be an
homomorphisn. In (b) and (c), the real-time
sequence of state transitions has been abstract-
ed, and only the ordering of transitions re- '
mains; but for continuous dynamical systems as
in (a), actual transition times in @(t) must be
preserved. The basic operations on the fields '
in (a) and (b) are different, and thus the :
class of possible functions generated by ¢ and -
A are inherently different. Finally, it might
be necessary to generalize the input space of
(a) to include distributions (i.e., impulse
trains).

PROPOSED REPRESENTATION

By introducing some formal assertions, we dem-
onstrate how definitions (b) and (c) may be
modified so that the system of Fig. 1 may be
interpreted as a generalized dynamical system.
The demonstration that these assertions are

:zese are !."78“1”0%?&6 %xzé of i ’ &:A

e e At 4

By allowing §,A to depend on kI, the structure ‘

of the next~state and current-output mappings
may vary with k. Wwhile W could denote any in-
put string of finite length, it.is proper here
to associate it with an input set as ‘used in

The initial state and index are
ecified in the definftion of M.
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consistent is beyond the scope of this brief

note. PFirst, a definition is introduced
that generalizes the machine M to have a
real-time structure.

Definition 1: A finite-state dynamic_system,
on_an interval TCR, is a set I'= (W,W Z,T,Q,
8,A). The sets W = TxW and-Z = Tx2Z for fi-
&ite input and output sets W,Z respectively.
and are spaces of sequences of elements
in W and Z for which the first index is
monotonically increasing. For a positive
integer n and finite set {, the state set
has the structure Q= (TxQ)B. The state-
transition map 0 satisfies the
following pzoperg_ies: Given a sequence

v} = {'k W }e W, let 'l'k denote the pro-

jection of W onto T, i.e., the set of input

transition-times {tk}, k-k % ko-l-]., k°+2,....
For any {W}e w, 40 tj' t,eT ka &eﬁ'. then

(i) G(ti'tk'{w}'q) Lo q

(ii) for a.ny t, <t and {a}eﬁ such that
b |
{‘“} = (W} on [t .tj] then 6(tj
{V} ¢ Q) = G(tjr 1° {'}0 q).
-_ (iii) whenever t; «‘j«'z' 6(tz'ti' {w}, q) =

G(t 3 - G(t 'ti' {V}i q))-

J 3

Finally, the readout map A: 'Rx'erxQ +2., #
A more concise definition of a finite-state
dynamic system could be given if it were not
for our attempt to clarify how the conven-
tional notions of dynamic system and finite-
state sequential machine have been reconcil-
ed. Actually, the ideas are quite simple.
The key concept is that all "spontaneocus”
state transitions should ultimately be at-
tributable to either the initial state or
some input transition; the rate at which
such transitions occur is due to any inher-
ent finite delays for any implementation of
the machine. Consequently, each "input" can
be characterized by

(a) the time of the current input transi-
tion, tk

(b) the new input value (for t> tk)

This is denoted as w = {tk'" } above. Notice

that when there are several input lines, a
transition on any one of them is considered

elapsed time since the most recent (oxr n
most recent) state transition(s), at the cur-
rent input transition time, t.k Between in-

put transitions, the state may, of course,
undergo a large (but fi.n:l.te) number of
transitions at intervals determined by the
internal system delays. However, these are
completely predictable given the past state
and the current input, and hence the next
state can be computed. This is considered
to be the key defining property of the
"state"” of a system. A major technical ob-
stacle in defining real-time automata has
thus been successfully removed--it would
otherwise be impossible to project the "next
state” of such a system until the "next™ in-
put transition were known! Consider now the
natural structure of the state-transition
map, & between input-transitions tk and

n
tk+1' i-eo' 6(tk+1 tk {(tj" ,}l ‘ 'qk) )I
which is the analog of the next-state map,

6, in a finite-state s?v._lential machine, M.

-By causality, the map 0 can only depend on

the single pair ‘tk+1 "k+1) of the se-
quence {(tj,wj)} for a given k. s'my al-

ways be represented as two functions in this
single-transition case:

§ = (610 Gq)
(3
L N
Uea1 ‘tku' iert (e 2™
=1 2,...,n.2 The function 6% projects the v
2-th state transition time, 'r:ﬂ prior to

the current input transition, while the
function 6 Q projects the current state due

to the current i.nput;—transition (tk+1' k+1)’

It is readily verified that this definition .
applies to both synchronous and asynchronous
machines. Finally, one can appeal to the
viewpoint taken by Allen and Gallager (1977)
in viewing the (initial) state of a machine '
to include both "internal registers"™ and
"mass storage"-thus the compensation algo-
rithm itself becomes part of the machine's
initial state. In other words, selecting
the control algorithm corresponds to choos-
ing an initial data set for the machine.

The formulation is sufficiently general to
allow that the algorithm execution changes

the machine structure itself. i’ is .pmx-
st oo wwisse the man

|
|
f
1
|
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for our attempt to clarify how the conven-
tional notions of dynamic system and finite-
state sequential machine have been reconcil-
ed. Actually, the ideas are quite simple.
The key concept is that all "spontanaous”
state transitions should ultimately be at-
tributable to either the initial state or
some input transition; the rate at which
such transitions occur is due to any inher-
ent finite delays for any implementation of
the machine. Consequently, each "input" can
be characterized by

(a) the time of the current input transi-
tion, fm

(b) the new input value (for t > t,)

This is denoted as w = {tk,w } above. Notice

that when there are several input lines, a
transition on any one of them is considered
a transition time. The state set is also a
product space; each "state variable" takes
values in the finite set Q. The time-para-
meter carried with it is the time of the
most recent state-transition strictly prior
to the current input-transition, and qeQ is
associated with the value of the state fol-
lowing that state transition;
thus elements of § take the form (Tk.q)n- as

it may in general be necessary to keep count
of a finite number of prior transitions.
Again it is important to note that 'r is al-

ways by convention the

4 axe splccl oz uqmceu of elements

i

sutc ca.n be computed.

andth. _centin . andlk.  the next
This is considered
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otherwise be impossible to project the "next
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put transition were known! Consider now the 3
natural structure of the state-transition
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n
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bt e 3‘“’):+1'tk"'x+1' “k"‘k’n’ /
L

!.-1.2,...,:1.2 The function 6‘:’ projects the 7

2~-th state transition time, t:ﬂ prior to {

the current input transition, while the
function 6q projects the current state due
to the current input-transition (_tk +1°Y% +1)'
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the control algorithm corresponds to choos-
ing an initial data set for the machine.

The formulation is sufficiently general to
allow that the algorithm execution changes
the machine structure itself. It is approx-
imately correct to view the map § as the
implementation of a machine's “"control struc-

2 n . - I 4
Note that "k'qk, is shorthand for (‘rk,qk,

‘r:.qk. cee .Tk,q:) « In qen'eral. n may also

depend on k, but is bounded above.
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ture”, and 8;! as implementing a "data flow

structure”, in the terminology of computer
science.

Returning to the context of the compensation
problem, it remains to define the coder and .
decoder. The following definitions would
appear natural:

Deﬂ.nition 23 ﬁd dynamic code is a causal
.y

el mgoing 01 T TN viis VNS awe

as in the definitions of a continuous dynam-.
ical system and a finite-state dynamical
system, respectively. Some of the issues of
defining codes of this type have been recent-
ly discussed by Ziv and co-workers (1977).

Examples

le 1l: Stabilization of a first-order
system. Figure 2 shows an ungtable first-
order lag, which is to be stabilizod (if pos-
sible) by a D-type flip-flop. ~The forward-
loop is a dynamical system with time-set !
T = [0,%), characterized by3 :

I= {R, C(T), R, C(T), R, ¢I l‘}

3!. - real numbers; C(T) - cont. functions on

T.

Figure 2(a):

ot ive vy 20 Adpppes ;20005
fo¢ Covtinvous Racessos

Pepey

§ o
cim ~ :“e: |f (t)l takes va.lues,

in the extended real numbers, and

a(t-to)
°(t't°:u(‘)lxo) = e - lo Xo (4.1)

Qhere || £ ||

t l'(t-‘t-to)
+ e u(r)dae

to . iz

and & "o

T(t,tgule),xg) = x(t) = y(t) (4.2) -
The cn.codcz is a threshold function with
level 0 and binary output, which is sampled
at regular intervals tk kA. The coder in-—
put takes values in the space §
]
V= {{e, 6, }[x=0,1,2...; O eW, ¢ er} ;7
where W = {0,1}. The coder is then defined “/

by the map C: cm-ﬁ where for™ yec('r),
Cy = {t k} and

Stabilization of an Unstable Lag

by a D-Type Flip Flop

y(1

=

M&k‘d‘_‘.&__ﬂ__“_wm v
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The encoder is a threshold function with
level 6 and binary output, which is sampled
at regular intervals tk = kA. The coder in-

put takes values in the space
W= {{e,. 8, }Ix=0,1,2...; @ ew, t,‘elt}

where W = {0,1}.
by the map Cs
Cy - {tkpa }

The _coder is then defined
c(r) where forgyec(r),
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1 yie) > 0

2
n

0 y(tk) < 6

The flip~-flop is almost the simplest example
of a finite-state dynamical system; it is
characterized by

. ~ e~ T e T A
r = w,w 2, 2, 9 6 A}

" where W = Rx{0,1)}, Z = »x{0,1}, and for
2= {011}0

: 7" - {{tkotk}lk'oolvzoo--likai tkm}&

The state-set is 3"- ('tkqu) where 'rkeR:‘
q)e:Q ={0,1}. In this device, the state

merely stores the value of the past input,
which was always sampled A seconds previous-
ly, i.e. ('t*,qk) = (A.0k 1) Thus the state-

transition map is implemented by
G(ti'tj; {tk'ek}' (A:qj)) = (Al"i_l, =331 -
(A, qj) i-j=0

and the output. map is
D: Z + C(T)

where {tk,zk} + @(t) is defined by @(t) =
Az, 4B whenever te[tk,tko-b) and A, B are real

k
numbers. The design parameters in this feed-

back system are thus 6, A and B.

The problem of determining which, values of
X, and a>0 yield a Lagrange stabilized sys-

tem by appropriate choice of 0, A and B has
been solved by D. G. Wimpey (1977). Since’
the system is synchronous, the state-tran-
sition maps ¢, § may be replaced by one-step
recursions, yielding the augmented system

[x(tiﬂ)l [e‘A (A/a) (1-e )]Ix(tﬂl

- meansasad framework. Due to space limitae

(ii) If <0, the system is only stable if

x =A/a, and then x(t)=a/a.
(iii) If 6>A/a, the system is not stabili-
zable for any X
(iv) If 0<6<n/a is chosen properly, a limit

cycle is obtained if 0<x <A/a; Xy = 0-

and A/a are critically stable initial
conditions.

Case 2: B#0

(i) If B>0, the results are similar to
Case 1.

(ii) If B<O, B must be chosen so that

(a+B) >0, ,and 6e(B/a, (A+B)/a] leads to

a limit cycle about 6. If (A+B)<0,

results similar to Case 1 are obtained

Initial states x e[B/a, (A+B) /a] may

be stabilized.

Mosw- interesting is Case 2, (ii), and a re-
presentative trajectory is sketched in Fig.
2(b). The quantity -~ aA affects the ampli-
tude of limit cycle oscillations.

The purpose of this example is to illustrate
how the general notation applies in a spe-
cific synchronous finite-state compensation
problem, and to illustrate that indeed sta-
bilization of continuous systems may be
achieved with a very economical finite-state
compensator which can be synthesized with a
threshold device, flip-flop, 2-level supply
and gate. The proposed representation was
used to conceptualize the problem in this
case, but is not in itself a design method.

Note that the product afac for representing
the c..osed-loop systeu\ immedia t., given

Land I'.

Example 2: A Finite-State Dynamical System
with Feedback. A simple asynchronous fi-

nite-state system, Johnson and Kovacs (1977),

with delays in an internal feedback loop is
shown in Fig. 3. No general but explicit
theory for this class of system is known to
the author, yet it is readily represented
as a finite-state dynamical system using the
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/ where W = Rx{0,1)}, Z= rx{0,1}, and for

2= {051}'
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The state-set is ?- ﬁ:k,qk) vhere T,ER,
9eQ ={0,1}. In this device, the state

merely stores the value of the past input,
which was always sampled A seconds previous-
ly, i.e. (q.q) = (AW _,). Thus the state-

transition map is implemented by
G(ti'tj; {tk'ak}' (Aaqj)) 2 (A‘"i-'l) i-321-
(A, qj) i-j=0

and the output map is
~f
D: Z +cC(T)

where {tk,zk} + @(t) is defined by @(t) =
Azk+a whenever te[tk,tk-i-A) and A, B are real
numbers. The design parameters in this feed-
back system are thus 6, A and B.

The problem of determining which values of

X, and a>0 yield a Lagrange stabilized sys-

tem by appropriate choice of 6, A and B has
been solved by D. G. Wimpey (1977). Since
the system is synchronous, the state-tran-
sition maps ¢, § may be replaced by one-step
recursions, yielding the augmented system

A

al (l-ea )

x(t...) e (a/a) x(ti)

i+l

941 ; o 9

+[ (8/a) (1-e2D)

A

al x(t,) + a"lmqiﬂa) (1-e2%)

sgn{e

- 0}

Careful consideration of these equations
leads to the following cases:

Case 1l: B=0

0

(i) If x.<0, the system is not stabili-az

zable.

A " [) 0 é
and A/a are critically stable initial

conditions.
Case 2: B#0

(1) If B>0, the results are similar to
Case 1.

(ii) If B<O, B must be chosen so that
(A+B) >0, and 6e[B/a, (A+B)/a) leads to
a limit cycle about 0. If (a+B)<0,
results similar to Case 1 are obtained
Initi=) states xoe[B/a, (a+B) /a] may

be stabilized.

Mose- interesting is Case 2, (ii), and a re-
presentative trajectory is sketched in Fig.
2(b). The quantity - aA affects the ampli-
tude of limit cycle oscillations.

The purpose of this example is to illustrate
how the general notation applies in a spe-
cific synchronous finite-state compensation
problem, and to illustrate that indeed sta-
bilization of continuous systems may be
achieved with a very economical finite-state
compensator which can be synthesized with a
threshold device, flip-flop, 2-level supply
and gate. The proposed representation was
used to conceptualize the problem in this
case, but is not in itself a design method.

Note that the product space for representing
the c..osed-loop system_ is i.mediate, given

Land T.

Example 2: A Finite-State Dynamical System
with Feedback. A simple asynchronous fi-
nite-state system, Johnson and Kovacs (1977),
with delays in an internal feedback loop is
shown in Fig. 3. No general but explicit
theory for this class of system is known to
the author, yet it is readily represented
as a finite-state dynamical system using the
proposed framework. Due to space limita-
tions, we shall not spell out the formalisms
but only indicate the key ideas. Let
{tk,wk} denote the sequence of input transi-
tion times tk' where wk=1 if d(t:) > 6 and
0 if d(t;:) < 6; the set {t|a(t)=0} is as-

sumed to have measure zero, and d(*) is also
assumed to have a degree of smoothness such

that |tk+1—tk|>A1. ~One (minimal) represen-

tation is obtained by taking as states
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" Pigure 3: A Finite-State System withh Feedback

through delays Al' A2
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where 1:; is the elapsed time since the most

recent switching of s for t < tk ('rk = 0 if
2

s switches at tk)' and ‘rk tk—tk-l is the

elapsed time since the last input transition.

The key issue is to verify that § is well-

defined for one time step i.e., given

L L 3 | S
(T_yr G o) and(t,, @0, £ind (T, Q).
Clearly the new input defines the last state

/ component of_,_qk. If t. .>0, ll will switch

1 v 1
at t, =T ., * 4, and if also T, _,%4,, s,

transition will occur at tk- -T +A_ and

: + 1 k 2
Tkr-'o; or (ii) if s(T l) = 0, no further

k+

changes will occur until H‘ and also Tk'no.

If ak-l =1, and (Ti) is laxge a cycle of
period 262 and duty cycle 1 will be propa-

gated, and T may be determined by (‘l’:-o- ‘l';')
mod 2A2. Note that the system of Fig. .3 is

k
a particular instance of the combined coder-
finite state dynamic system portion of the
general feedback system shown in Fig. 1.

DISCUSSION AND CONCLUSIONS

The results are still preliminary. The fol-
lowing issues can now be addressed: (1)
proving when or if such a representation is
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" rigure 3: A Finite-State System with Feedback
through delays Al' Az

1+ 1
s(t, -T,) T, transition will -
2 %% S O ey
q = W 5 - ; : T =1,2 tiBO; or (ii) if s(Tk+1) = 0, no further
“k‘tx“x’ T changes will occur until t, and also 1*-0.
. If ﬁk_l = 1, and (Ti) is large a cycle of
where T, is the elapsed time since the most
k P period_zA2 and duty cycle 1 will be propa-
recent £ t < 0 ' : ; -
SenC. Suitoniog o f?f S o gated, and T, may be determined by (1: + Ti)
s switches at tk). and "= tkftk-l is the mod 2A2. Note that the system of Fig. 3 is
elapsed time since the last input transition. & - ;
The key issue is to verify that & is well- :1§:::1§:ii: ;;:::z:es;:t::ep::::i:egfc:g:r-
deii“ed i°r one time step i.a., givenz general feedback system shown in Fig. 1.
o Ty 9 y) and(t, @), £ind (T, 9. : .
! Clearly the new input defines the last state NEEUEERE W RS :
/
! component of,q,. If T, _,>0, 8, :ill WL En The results are still preliminary. The fol-
at t, .-T + A. and if also T, >A., S lowing issues can now be addressed: (1)
=1 ‘k=d 1 N proving when or if such a representation is
will switch at ¢, -7 _, + 8,. but by defi- canonical; (2) examining the properties of
nition, these do not lead to further transi- closed-loop dynamics obtained by state aug-
o | mentation; (3) developing design and simula-
tions of s in (t, ,-T, ., + 8,, tk-l)' &nd tion methods for such systems; (4) examina-
thus sl' 32 remain constant, until tk—l' tion of the natural operator algebra on the
1l + oduct s ;s (5) generalizati to -
Thus for all L > 0, q is known at tk-l pr u? ?a?e (5) genera zasxons sto
Gf T =0, ¢ =q(t+ S, oo b "W . chastic-finite-state systems.
k-1 ' “k-1 k-1 k-1 %'

the input has constant value $ _1, so it is

simply a matter of sfpulating the transi-
, an interval of length

5Whlle technically involved, the generaliza-

tions up to tk tion of these ideas to the stochastic case

t -t and then determining if W _ produces should be feasible. It requires synthesis of
k k-1 k results on continuous-time stochastic sys-
an s-transition at t, . Clearly this can be tems, stopping times, and Markov chain

k=1
the literature.
large, then (i) if s(T, )) = 1, a single i

carried out. In fact, if w, .=0 and (Ti) is theory, which are already well-developed in
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The primary contribution of this note is that
a systematic and general method for analyz-
ing the real-time behavior of both synchro-~
nous and asynchronous finite-state sequential
machines has been discovered, and that this
is representation is convenient for analyz-~
ing feedback systems. A design method based
on this representation has the potential for
yielding digital control algorithms which
are directly implementable, thus avoiding a
tedious process of approximating controllers
based on ordinary calculus or, on the other
hand, ? Aon approximate representations of plant
dynamics.
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